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Abstract-—Heat transfer to a Poiseuille flow in a tube is studied under transient conditions, resulting
from a step increase in wall temperature at time # = 0 for z > 0, where z is the axial distance.
Asymptotic solutions for small time or large axial distance, and for small axial distance, are obtained.
In the former case, the solution is seen to be exactly independent of axial distance. In the latter case,
the solution is independent of time for z <€ 8, and independent of axial position for z > §; between

these two limits, the solution is a function of both time and axial position.

NOMENCLATURE
Ai(x), Airy function of the first kind;
C, heat capacity;
erfc(x), complementary error function;
E, constant in equation (8);
W, confluent hypergeometric function;
H, unit step function;
k, thermal conductivity;
R, tube radius;
S, P, Laplace transform variables related
to ¢ and x, respectively;
i, temperature;
to, temperature at entrance of heated
section;
tuw, wall temperature;
T, dimensionless temperature
= (t = 19)/{tw — to);
T*, double Laplace transform of T';
v, velocity in axial direction;
Vmax, maximum fluid velocity;
W, V45
X, dimensionless axial distance
kz
PC VinaxR2
V. dimensionless radial distance = r/R;
zZ,F, axial and radial distances, respec-
tively.

~‘{ Present address: Department of Chemistry and
Chemical Engineering, University of Illinois, Urbana,
1llinois,

Greek symbols

I'(x), gamma function;

P, density;

8, time;

&, dimensionless time = k8/pCR2;
o, defined by equation (9);

A, defined by equation (10).

INTRODUCTION

TraNsiENT heat transfer to a fully developed
laminar flow between flat plates and in a circular
tube has been treated by Sparrow and Siegel
{1, 2]. The energy equation was integrated over
the cross section, the temperature distribution
written as a third order polynomial, and the
resulting equation solved by the method of
characteristics. The results show an abrupt
change from a transient solution which is
independent of position in the direction of flow
to a steady-state solution, with a change in
temperature slope at this point. The same
authors attack the unsteady turbulent case in
much the same manner [3], again resulting in a
sudden change from transient to steady-state
solutions.

Improvements on the above solutions were
made by Siegel [4] for laminar flow, and by
Sparrow and Siegel [3] for turbulent flow. A
series expansion is made around the steady-state
solution. The energy equation is integrated over
the cross sectional area, and the method of
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characteristics used to determine the terms of the
series. The heat flux is now found to vary
smoothly between the transient and the steady-
state. The solution is exact for large time, and is
a good approximation for small time.

On the other hand, recent advances in the
asymptotic theory of linear differential equations
of second order for large values of a parameter
have made practical direct integral transform
approaches to this and similar problems [5-11,
12]. In this note the problem is attacked by
means of a double Laplace transform. Asymp-
totic solutions are found for large values of each
of the transform variables, and these asymptotic
solutions are then inverted. The results are, to
the accuracy of a graphical presentation,
identical to a numerical solution given by
Sparrow and Siegel [1].

EQUATIONS

The dimensionless equation describing un-
steady heat transfer to fully developed incom-

pressible laminar Newtonian flow in a tube is

cT 82T 1 eT

R Y e R D P )
It is assumed that the Pmseullle velocity profile
is undisturbed by temperature changes, that the
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properties of the fluid, i.e. thermal conductivity,
density, and heat capacity, are constant, and
that axial conduction may be neglected. If the
fluid is initially everywhere at the same tempera-
ture, and at some time a step temperature is
imposed on the wall of the tube, the dimension-
less initial and boundary conditions are:

¢ =0 T=0

x=0 T=0

y=40 T = finite

y=1 T=1 x>0,¢>0.

The problem will be attacked by use of the
double Laplace transform

T*=?TTexp[——s¢—-px]d¢dx

g 0
reducing the equation to

d*T* 1 eT*

GETy Gt s =0 @)
with boundary conditions
y=1 T* = 1/sp
y=20 T*  Afinite.

The solution to the above system may be
written as

* s+
e, exp[ py]lFl(+ _____ p

diph 1 ip%y‘z) exp [s¢ + px]

(27171')2 J J sp

oy O g

exp | -

sl

—dsdp  (3)

st+p. )
g s 1

where 1F; is the confluent hypergeometric function. Details of this and of later steps can be found

in (13).

ASYMPTOTIC SOLUTION FOR SMALL TIME

Asymptotic expressions for large p and for large s, corresponding to small axial distance and to
small time respectively, will now be used to evaluate equation (3). It may be shown (13), that for

large s equation (3} can be written

Chig Ciig

1 exp[— (s + p)t (1fy)+8¢+pX]

T iy S j sp yt

Cigg C'—tp
 — 4pyt

2 24y (s+pp

"
| 3--4p
T24(S+P)%+ 4.16.6(s+p)

+ 27 + 83 pyt -+ v--py8+ }

1 d 4
27+88p4~36p sdp. (4

4+ ... J
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The temperature can now be found from equation (4) by dividing the two asymptotic series and

inverting term by term. The result is

1 1 A
T = {)} [H(qé x) erfc + H(x — ¢) erf‘c 2 }} +
1—-y N 4
{Zym [H( — ) ¢t zerfc ‘# + H(¢ — x) xtierfc o5 ] 4+
y—y H¢ —x) A—yF , JO =2y —=T7¥ .
652 mixt 2 j-!— 32,97 H(x — ¢)b i erfc 3 & +
r )
1 — 13y2 4 11y4 4 )5 1—y
H(¢ ] -+ 455 H(¢ — x) erfc e +
*2y5+y8H(¢~x)l~~y (1~—~y)2
72,57 2 ez %P { Tax l +-
H(n)———{ézzgi i”erfcn:{i""lerfctdt n=0,12,.
Equation (5) holds for y > 0. A similar expres- with
sion, valid at the center of the tube, is presented -0 T = 1
in (13). It is also shown there that equation (5) W= = l/sp
is a series of terms of ascending order in ¢, e T* finite

It can be shown that equation (5) satisfies the
initial and boundary conditions of the problem

(13).

ASYMPTOTIC SOLUTION FOR SMALL

AXIAL DISTANCE

For large p, or small axjal distance, the

curvature of the tube may be neglected. Also,

since in the region of developing temperature

profile the temperature changes are confined to

a region near the wall, the velocity profile
v = 2w — w? may be replaced by

N

v=2w-+ 3 an n"

=2

0<<w<

©

where w is now the distance measured from the
wall, i.e. w == 1 -} y. Equation (6) can be made
to approximate closely the true velocity profile
near the wall, but must have its only zero at
w =10. There is no longer a zero at w == 2,
With these assumptions equation (2) becomes

dz7*

N
W sT* — pQw + ;gan wi)yT* =0 (7)

An aymptotic solution of equation (7) can be
found for large p by the method of Langer {8].
Omitting the details, the result is

(a

T*(s, p, W) = [Ar(o {
|
Ai'(C){j }} J

where F is an arbitrary constant to be found
from the boundary condition at w = 0,

@p)3(a")
4pat

[e'(OF A() dr + .. } ®)

sa' (D1 — (') dt
[o(1)]?

(W) = [ zf(szr B anwnp dw]% ©)

w

j o¥(?)

[(ff’(t))2 — 1] ds

A =" s 4 @y

(10)
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Ai = Airy function

_ S+ 2po
= @ p)z/s

The primes denote differentiatio
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to the argument. The heat flux at the wall can be
obtained by differentiating equation (8) and
determining the double inverse transform. The
first term in the series for the gradient at the wall
is

'S (I

with regnect
W1

ar|  werg) 3
i) R e Rl 7 poy e T2
n

(12)

¥ T4)a

where b, are the zeros of Ai.

DISCUSSION
These results will be compared with work of
Siegel and Sparrow for transient heat transfer
to laminar forced convective flow between flat
plates and in a tube. Our expression for the heat
flux for small axial distance holds for either
plates or tubes since wall curvature may be

12 j X ‘}

w— Sparrow and Siegel,
method of characteristics

——-—Sparrow and Siegel,
finite difference solution;
also present solution

p1e X=5x10™%

jx=m
—

~——

3/16 x=107°
[
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FiG. 1. Transient dimensionless temperature gradient at
the wall.
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neglected in this region. For small time, or large
axial distance, we have shown for the tube that
the solution to the problem reduces to that of
conduction. It may be shown, but is not done
here, that a similar result arises in the case of
flow between flat plates. It is thus possible to
construct the entire solution for both cases.

In Fig. 1, the flat plate dimensionless tempera-
ture gradient is shown as a function of dimen-
sionless time, with dimensionless distance as a
parameter. Three solutions are shown: the
solutions of Sparrow and Siegel found by the
method of characteristics and by finite differ-
ences, and the results of the present work. The
latter are, to the accuracy of the graph, identical
to the exact finite difference solution.
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Résumé—Le transport de chaleur dans un écoulement de Poiseuille 4 I'intérieur d’un tube est étudié
sous des conditions transitoires, résultant d’'un accroissement brutal de la température pariétale a
I’instant # = O pour z > 0, ol z est la distance axiale. On obtient des solutions asymptotiques pour un
temps faible ou une grande distance axiale, et pour une petite distance axiale. Dans le premier cas, on
voit que la solution est rigoureusement indépendante de la distance axiale. Dans le deuxiéme cas, la
solution est indépendante du temps pour z < 8, et indépendante de la position sur ’axe pour z > 0;
entre ces deux limites, la solution est fonction a la fois du temps et de la position sur ’axe.

Zusammenfassung—Die Wirmeiibertragung an eine laminare Strémung in einem Rohr wird bei
verschiedenen Bedingungen untersucht. Der Wirmetibergang rithrt von einer stufenweisen Steigerung
der Wandtemperatur bei der Zeit § = 0 fuir z > 0 her, wobei z die axiale Entfernung bedeutet.
Asymptotische Losungen fiir einen kleinen Zeitabschnitt oder einer grossen axialen Entfernung und
fiir eine kleine axiale Entfernung werden erzielt. In dem ersteren Fall ist die Lésung vollkommen
unabhingig von der axialen Entfernung. Im letzteren Fall ist das Ergebnis unabhéngig von der Zeit
fiir z <€ 6 und unabhingig von der axialen Lage fiir z > 6. Zwischen diesen beiden Grenzen ist die
Losung eine Funktion sowohl der Zeit als auch der axialen Entfernung.

Annoranmua—¥ccnenyerca 3ajgavya o Telroo0MeHe IpH IIyas3eilleBCKOM TedeHUM B Tpyle B
cIy4ae MePexXoJHOro HpoIecca, BO3HUKAIOUIETO B Pe3yibTaTe CKAYKOOGPA3HOTO NOBHIIIEHUA
TeMIIePaTypsl CTeHKH B MOMeHT BpeMeun § = O npn z > 0, rxe z—paccToAHUE BIOJDL OCH.
TMoay4eHE aCUMIITOTHYECKIE PEIIEHNU IJIA MAJIHIX BpeMeH Ui GOJIbIINX 0CEBBIX PACCTOAHMAX,
a TakrmKe A 1eGoJbIINX PACCTOSHII 110 0CH. Y CTaHOBJIEHO, YTO B IIEPBOM CIy4ae pelleHue
COBEPIIEHHO He 3aBICHT OT PACCTOAHMA BIOJIbL 0CH. B0 BTOPOM ciIyuae pelueHire He 3aBUCUT OT
BpeMeHU npH z <€ 0 i He 3ABHCHT OT ITOJIOKEHUA HA OCH I z 3> 0. B NpOMemyTKe Mempy
STUMU IpefleIbHBIMI CIIYYasAMU DellenHe ecTh (YHKIMA BpeMeHH M PACCTOAHUA BIOJIb (CH.
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