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Abstract-Heat transfer to a Poiseuille flow in a tube is studied under transient conditions, resulting 
from a step increase in wall temperature at time 0 = 0 for .z > 0, where z is the axial distance. 
Asymptotic solutions for small time or large axial distance, and for small axial distance, are obtained. 
In the former case, the solution is seen to be exactly independent of axial distance. In the latter case, 
the solution is independent of time for z < @, and independent of axial position for z > 8; between 

these two limits, the solution is a function of both time and axial position. 
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NOMENCLATURE 

Airy function of the first kind; 
heat capacity; 
complemental error function; 
constant in equation (8); 
confluent hypergeometric function; 
unit step function; 
thermal conductivity; 
tube radius; 
Laplace transfo~ variables related 
to 4 and X, respectively; 
temperature; 
temperature at entrance of heated 
section; 
wall temperature; 
dimensionless temperature 
= (t - ro)i(&u - to) ; 
double Laplace transform of T; 
velocity in axial direction; 
maximum fluid velocity; 
1 +Y; 
dimensionless axial distance 

kz 

~CVrnaxR~’ -_.._. 
dimensionless radial distance = r/R; 
axial and radial distances, respec- 
tively. 

-_____- 
t Present address: Department of Chemistry and 

Chemical Engineering, Umversity of Illinois, Urbana, 
Illinois. 

Greek symbols 
I-W, gamma function; 
P? density; 

:, 
time; 
dimensionless time = k%lpCIyL; 

!J> defined by equation (9); 
a, defined by equation (10). 

INTRODUCTION 

TRANSIENT heat transfer to a fully developed 
laminar flow between flat plates and in a circular 
tube has been treated by Sparrow and Siegel 
[1, 21. The energy equation was integrated over 
the cross section, the temperature distribution 
written as a third order polynomial, and the 
resulting equation solved by the method of 
characteristics. The results show an abrupt 
change from a transient solution which is 
independent of position in the direction of flow 
to a steady-state solution, with a change in 
temperature slope at this point, The same 
authors attack the unsteady turbulent case in 
much the same manner f3], again resulting in a 
sudden change from transient to steady-state 
solutions. 

Improvements on the above solutions were 
made by Siegel [4] for laminar flow, and by 
Sparrow and Siegel [3] for turbulent flow. A 
series expansion is made around the steady-state 
solution. The energy equation is integrated over 
the cross sectional area, and the method of 
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characteristics used to determine the terms of the 
series. The heat flux is now found to vary 
smoothIy between the transient and the steady- 
state. The solution is exact for large time, and is 
a good approximation for small time. 

On the other hand, recent advances in the 
asymptotic theory of linear differential equations 
of second order for large values of a parameter 
have made practical direct integral transform 
approaches to this and similar probIems [S-11, 
121. In this note the problem is attacked by 
means of a double Laplace transform. Asymp- 
totic solutions are found for large values of each 
of the transform variables, and these asymptotic 
solutions are then inverted. The results are, to 
the accuracy of a graphical presentation, 
identical to a numerical solution given by 
Sparrow and Siegel [l]. 

EQUATIONS 

The dimensionless equation describing un- 
steady heat transfer to fully developed incom- 
pressible laminar Newtonian flow in a tube is 

Kr %T av 1 3T 
gq + (1 - y2) ;,; = zy2 + j “ly . (1) 

It is assumed that the Poiseuille velocity profile 
is undisturbed by temperature changes, that the 

properties of the fluid, i.e. thermal conductivity, 
density, and heat capacity, are constant, and 
that axial conduction may be neglected. If the 
fluid is initially everywhere at the same tempera- 
ture, and at some time a step temperature is 
imposed on the wall of the tube, the dimension- 
less initial and boundary conditions are: 

$=O T=O 

x=0 T=O 

y=o T = finite 

y=l T=l X > 0, + > 0. 

The problem will be attacked by use of the 
double Laplace transform 

T* = 7 3 Texp [-- $4 - p;u] d# ds 
0 0 

reducing the equation to 

d!+; ~~+(+p+y2p)T*=O (2) 

with boundary conditions 

y=l T* = l/asp 

y=o TX finite. 

The solution to the above system may be 
written as 

where 1Fi is the confluent h~ergeometric function. Details of this and of later steps can be found. 
in (13). 

ASYMPTOTIC SOLUTION FOR SMALL TIME 

Asymptotic expressions for large p and for large s, corresponding to small axial distance and to 
small time respectively, will now be used to evaluate equation (3). It may be shown (13), that for 
large s equation (3) can be written 

c+i, C'i ia 
1 s s 1 

7=(&p 
exp [-- (s + PY (1 - Y) + s$l + ~4 

sj Yi 
C-pi, C’--1’, 

c 
2 + 24ycs+ p)i 

’ - 4%f- -+ 27 -j- 88py4 + :” p2ys + . . . 1 
----c___ .-. - .--- ---. .-- -- .~~ 

i 

ds dp. (4) 
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The temperature can now be found from equation (4) by dividing the two asymptotic series and 
inverting term by term. The result is 

y2-2y5+.f fw-4 1 --Y 
72~5~2 2 

WI) = 
1 q>o; 
or]<o; P erfc 7 = 4 P-1 erfc t dt rr=o,1,2 f.... 

‘) 

Equation (5) holds for y > 0. A similar expres- with 
sion, valid at the center of the tube, is presented 
in (13). It is also shown there that equation (5) w = 0 T* = lisp 

is a series of terms of ascending order in (b. U’ = co T* finite 
It can be shown that equation (5) satisfies the 
initial and boundary conditions of the problem An aymptotic solution of equation (7) can be 

(13). found for large p by the method of Langer [8]. 
Omitting the details, the result is 

ASYMPTOTIC SOLUTION FOR SMALL 
AXIAL DISTANCE 

For large p, or small axial distance, the 
curvature of the tube may be neglected. Also, 
since in the region of developing temperature 
profile the temperature changes are confined to 
a region near the wall, the velocity profile 
u = 2w - wa may be replaced by 

v = 2w + 5 an 14’~ OGw<co (6) 
n=?, 

where w is now the distance measured from the 
wall, i.e. w = 1 + Y. Equation (6) can be made 
to approximate closely the true velocity profile 
near the wall, but must have its only zero at 
w = 0. There is no longer a zero at w = 2. 
With these assumptions equation (2) becomes 

d2T* 
---.sT*-p(2w+5o,,w9T*=O (7) 
dwa la=2 

(o’)! + k?f 

7 

2P 
W 

s 

[u’(t)]3 A(t) dt + . , . 
> (8) 

0 
w 

Ai’(C) 
su’(t)]l - (u’(t))21 dt __ _._~. 

b(tP 
+... 

0 

where E is an arbitrary constant to be found 
from the boundary condition at w = 0, 

u(w) = 2 [s 3 w (2~ + $ an wn)b dwlZR (9) n=a 
0 

A($ = $g [l - s + (ri’)2 SJ j: c+(t) 

[(I’m - I] dr (10) 



1306 J. L. HUDSON and S. G. BANKOFF 

Ai = Airy function 

s i- 2PU 
5 = (2pj”iS (Ill 

The primes denote differentiation with respect 
to the argument. The heat flux at the wall can be 
obtained by differentiating equation (8) and 
determining the double inverse transform. The 
first term in the series for the gradient at the wall 
is 

dT 35;6 r(g) 

2 

3 
a; w=. = - 5/3vx1!3 -___-- 2413, bn x1/3 

n 
m ._ 

s exp (- 2-i 6312) Sin (3'2 2-i _ 

0 

where bn are the zeros of Ai. 

(12) 

DISCUSSION 

These results will be compared with work of 
Siegel and Sparrow for transient heat transfer 
to laminar forced convective flow between flat 
plates and in a tube. Our expression for the heat 
flux for small axial distance holds for either 
plates or tubes since wall curvature may be 
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FIG. 1. Transient dimensionless temperature gradient at 
the wall. 

neglected in this region. For small time, or large 
axial distance, we have shown for the tube that 
the solution to the problem reduces to that of 
conduction. It may be shown, but is not done 
here, that a similar result arises in the case of 
flow between flat plates. It is thus possible to 
construct the entire solution for both cases. 

In Fig. 1, the flat plate dimensionless tempera- 
ture gradient is shown as a function of dimen- 
sionless time, with dimensionless distance as a 
parameter. Three solutions are shown: the 
solutions of Sparrow and Siegel found by the 
method of characteristics and by finite differ- 
ences, and the results of the present work. The 
latter are, to the accuracy of the graph, identical 
to the exact finite difference solution. 

ACKNOWLEDGEMENT 
This work was supported by the National Science 

Foundation by means of a research grant and a graduate 
fellowship. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

REFERENCES 
R. SIEGEL and E. M. SPARROW, Transient heat 
transfer for laminar forced convection in the thermal 
entrance region of flat ducts, Trans. Amer. Sac. 
Mech. Engrs, Series C, 81, 29 (1959). 
E. M. SPARROW and R. SIEGEL, Thermal entrance 
region of a circular tube under transient heating 
conditions, Proc. Third National Congress of Appl. 
Mech., p. 817. Boston University (1958). 
E. M. SPARROW and R. SIEGEL, Unsteady turbulent 
heat transfer in tubes, Trans. Amer. Sot. Mech. 
EHgrs, Series C, 82, I70 (1960). 
R. SIEGEL, Heat transfer for laminar flow in ducts 
with arbitrary time variations in wall temperature, 
1. Appl. Mech. 27, 241 (1960). 
A. ERD~LYI, Asymptotic Ekpausions. Dover Publica- 
tions, New York (1956). 
J. L. HUDSON and S. G. BANKOFF, An exact solution 
for unstczady heat transfer to a uniform shear flow, 
Chem. Engng Sci. (in press). 
R. E. LANGER, The asymptotic solutions of ordinary 
differential equations of the second order, with 
special reference to a turning point, Trans. Amer. 
Math. Sot. 67, 461 (1949). 
R. E. LANGER, Turning points in linear asymptotic 
theory, Univ. of Wise., Math. Research Center 
Report No. 127 (December 1959). 
K. MILLSAPS and E. POHLHAUSEN, Heat transfer 
to Hagen-Poiseuille flows, Proceedings of the Con- 
ference on Differential Equations, p. 271. University 
of Maryland (1955). 

10. P. M. MORSE and H. FESHBACH, Methods of Theoreti- 
cal Physics. McGraw-Hill, New York (1953). 

1 I. F. W. J. OI.VER, The asymptotic solution of linear 



ASYMPTOTIC SOLUTIONS FOR THE UNSTEADY GRAETZ PROBLEM 1307 

differential equations of the second order for large University Press, Cambridge (1960). 
values of a oarameter. Phil. Trans. Rov. Sot. Lond.. 13. J. L. HUDSON, Ph.D. Thesis, Department of 
Series A, 245, 307 (19&). Chemical Engineering, Northwestern University, 

12. L. J. SLATER, Confluent Hypergeometric Functions. Evanston, Illinois (1962). 

R&sum&Le transport de chaleur dans un Ccoulement de Poiseuille a l’interieur d’un tube est ttudie 
sous des conditions transitoires, resultant dun accroissement brutal de la temperature parietale a 
l’instant 0 = 0 pour z > 0, oti zest la distance axiale. On obtient des solutions asymptotiques pour un 
temps faible ou une grande distance axiale, et pour une petite distance axiale. Dans le premier cas, on 
voit que la solution est rigoureusement independante de la distance axiale. Dans le deuxieme cas, la 
solution est independante du temps pour z < 0, et independante de la position sur l’axe pour I > 0; 

entre ces deux limites, la solution est fonction a la fois du temps et de la position sur l’axe. 

Zusammenfassung-Die Wlrmeiibertragung an eine laminare Stromung in einem Rohr wird bei 
verschiedenen Bedingungen untersucht. Der Warmetibergang riihrt von einer stufenweisen Steigerung 
der Wandtemperatur bei der Zeit 0 = 0 fur z > 0 her, wobei z die axiale Entfernung bedeutet. 
Asymptotische Losungen fur einen kleinen Zeitabschnitt oder einer grossen axialen Entfernung und 
fur eine kleine axiale Entfernung werden erzielt. ln dem ersteren Fall ist die Losung vollkommen 
unabhlngig von der axialen Entfernung. Im letzteren Fall ist das Ergebnis unabhangig von der Zeit 
fur z Q 0 und unabhlngig von der axialen Lage fur z >> 0. Zwischen diesen beiden Grenzen ist die 

Losung eine Funktion sowohl der Zeit als such der axialen Entfernung. 

AHAOTaqnJI--klCCneAyeTCFI aana=ra 0 TeLULOO6MeKe npn nyaaennencno# Te~eunu B TpyBe B 

cnyqae nepexonHor0 npoLlecca, no3HnKawqero B pe3ynbTaTe CKaqKOO6pa3HOrO nonbuueHnn 

TeMLIepaTypbI CTeHKll B MOMeHT BpeMeHIi 0 = 0 LLpH Z > 0, me z-paCCTOHHKe BAOJLb OCB. 

~OJry~eI-LbIaC~~L2rnTOT~~~eCK~epeIIIeHIL~~~Fl~la~bIX BpeMeJiHJiH 60JLbLUIIXOCeBbLXpaCCTO~HMFtX, 

a TaKme flnfz LLeBonbnnLx paccTonLLrfW no OCR. YcTaKoB.neKo, q~o B LrepBord cnyqae perrLesne 

COBepIIIeHHO I~e3aBI~CI1TOTpaCCTORHWLFJ~O~bOCll.BoBTOpOM CJLyqaepeUIeHHeHe3aB&lCr?TOT 

BpeMeHIl ILpH Z << 0 A He 3aBIlCHT OT LIOd7LOFKeHHfI Ha OCli &LfL Z > 0. B ILpOMe,KyTKe MWKgy 

~TJIMLI rLpenenbKbLMn cjIyqafniLL peruene ecTb $YHK~IIFI spe>feLia M paccTofunw Bnonb (ICII. 
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